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Abstract—In this paper we propose and analyze a localized
backbone renovating algorithm (LBR) to renovate a broken
backbone in the network. This research is motivated by the
problem of virtual backbone maintenance in wireless ad hoc
and sensor networks, where the coverage area of nodes are disks
with identical radii. According to our theoretical analysis, the
proposed algorithm has the ability to renovate the backbone
in a purely localized manner with a guaranteed connectivity of
the network, while keeping the backbone size within a constant
factor from that of the minimum CDS. Both the communication
overhead and computation overhead of the LBR algorithm
are O(k), where k is the number of nodes broken or added.
We also conduct extensive simulation study on connectivity,
backbone size, and the communicaiton/computation overhead.
The simulation results show that the proposed algorithm can
always keep the renovated backbone being connected at low
communication/computation overhead with a relatively small
backbone, compared with other existing schemes. Furthermore,
the LBR algorithm has the ability to deal with arbitrary number
of node failures and additions in the network.

Index Terms—maximal independent set, backbone renovating

I. INTRODUCTION

Virtual backbone is an important issue in wireless ad hoc

and sensor networks and has been widely applied in various

research domains such as routing, coverage, interference man-

agement, energy saving, etc., e.g., CDS as a virtual backbone

[1]–[7], or for coverage [8], [9] and network topology control

[10]–[15] for saving energy, reducing signal interference, etc.

In general, most of these approaches end up of forming a

dominating set as a backbone, through which each node in the

network either is on the backbone or has at least a backbone

node as its neighbors.

However, in wireless ad hoc and sensor networks the

network topology keeps changing all over the time due to

node failures, additions, or periodically switch on/off. It is

very likely that the constructed backbone quickly becomes

defective. The dynamism of the network poses a great chal-

lenge for backbone management/maintenance. Therefore, it

is imperative to provide an effective solution for backbone

maintenance.

In maintaining a backbone in ad hoc and sensor networks,

the localized approach is most favorable due to its efficiency

and its support to scalable design and network dynamism.

In this paper, we propose and analyze a localized back-

bone renovating (LBR) algorithm. This algorithm explores

the geometric properties of unit-disk graphs and renovates a

backbone at an ultra low O(k) computation overhead and O(k)
communication overhead, where k is the number of nodes

broken or added.
The major contributions of this paper are identified below:

• In this paper, we proposes a purely localized backbone

renovating algorithm (LBR) with ultra low communica-

tion and computation overhead.

• The proposed LBR algorithm has the capability of provid-

ing a renovated backbone with guaranteed connectivity

of the network. It is proved that unless the network is

no longer connected, the proposed algorithm can always

keep the renovated backbone being connected.

• The proposed LBR algorithm has the ability to deal with

arbitrary number of node failures and additions in the

networks in a purely localized manner.

• We have conducted extensive simulation study under var-

ious scenarios. The results show that the LBR algorithm

can effectively repair the backbone in an efficient manner

compared with other existing centralized and localized

approaches.

The rest of the paper is organized as follows: Section II

presents the related works. The preliminaries, models and

assumptions are introduced in Section III. Section IV fur-

ther derives some geometric properties of unit-disk graphs

that serve as the basis of the localized backbone renovating

algorithm. Section V is devoted to the localized backbone

renovating algorithm design. Section VI provides our theo-

retical analysis on LBR. Section VII reports our simulation

study and comparison results, followed by the conclusions in

Section VIII.

II. RELATED WORK

In the following we briefly overview the related works of

backbone construction and maintenance in unit-disk graph and

summarize the most related research.
Finding a CDS in the network is a popular approach for

backbone construction. The study of NP-Completeness of
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finding an MCDS in general graphs is proposed in [16].

This problem remains NP-hard in unit-disk graphs [17]. For a

detailed literature survey, we refer the readers to [18] and the

references therein.

Wan proposes the first MIS based CDS construction algo-

rithm [19]–[21]. A similar approach is proposed in [22] to

construct and connect an MIS simultaneously. A PTAS for

MCDS in unit-disk graphs is proposed in [23]. [24] proposed

a distributed algorithm for producing a tree-like backbone with

O(n) computation complexity and O(nlogn) communication

overhead. [25] selects the nodes with wider communication

range, more energy, etc., then uses a steiner tree to connect

the dominating set. [26] constructs the backbone via alge-

braic connectivity and introduce a new metric, connectivity

efficiency, as a benchmark when constructing the backbone. In

[9], by setting a timer at each node, the nodes with higher node

degree have higher probability to be included in the backbone,

which finally produces a spanning tree. [27] aims to construct

a backbone with the longest lifetime based on a weight matrix

of energy efficiency.

In unit-disk graphs and general graphs, the size relationship

between MCDS and MIS has been well studied, e.g., [12],

[28]–[35]. [36] uses local neighbors information and takes

node priority into consideration to construct a CDS, and

used an iterative application of a selected local solution to

maintain the CDS when the topology changed. In [37], a

connected dominating set is built directly without calculating

MIS. In [38], an MIS is constructed at first, and then the

CDS constructed with gateway nodes. [39] proposed a protocol

that is called Distributed Clustering Algorithm (DCA), which

can produce a maximal independent that is also a minimal

dominating set. [40] proposed a distributed algorithm for cal-

culating a minimal dominating set by a sequential, centralized

greedy way, whose execution time is polynomial, which is

associated with the size of network. [34]presents a distributed

algorithm which constructs a CDS D of size at most α·opt for

some fixed constant α in a polynomial time. Compared with

[34], [35] proposes a polynomial-time constant-approximation

algorithm, GOC-MCDS-C, that produces a CDS D whose size

|D| is within a constant factor from that of the minimum CDS.

[41] proposed a local randomized greedy (LRG) algorithm,

which calculates a minimal dominating set in poly-logarithmic

time. However, it can‘t guarantee connectivity.

Another kind of approach focuses on cluster based topology

and produces a independent set with the cluster heads. [42]

selects the cluster head based on node degree, while in

[43] the cluster head is selected based on the normalized

link failure frequency and the mobility of the nodes. These

algorithms usually start from a single-leader, whose election

costs O(n log n) in message complexity [44]. To improve this,

multiple-leader based algorithms are proposed in [12], [45],

[46]. To connect all nodes in MIS, [45] requires that each

node u in the MIS computes a shortest path to all independent

neighbors (the nodes in I whose distance to u is either two

or three hops) with a higher id. This connection algorithm

results in a CDS with size at most 192 · opt+ 48. By further

exploring the geometric properties of neighboring independent

nodes, [12] proposes a connection algorithm to generate a CDS

with size at most 147 · opt+ 33.

Note that [12], [45], [46] are the most related work since

both propose to connect an MIS in a localized fashion. There

exist other distributed or centralized algorithms to connect

an MIS. For example, a distributed spanning tree can be

constructed to connect all nodes in an MIS [47]; or a Steiner

tree with minimum number of Steiner points can be applied

to connect an MIS [48].

III. PRELIMINARIES, MODELS AND ASSUMPTIONS

A. Preliminaries

• dominating set: Given a graph G(V,E), a dominating set

D of G(V,E) is a subset of V such that for ∀u ∈ V −D,

there exists a v ∈ D satisfying uv ∈ E.

• connected dominating set: If all nodes in D induce a

connected graph, D is a connected dominating set.
• minimum (connected) dominating set: Among all (con-

nected) dominating sets of V , the one with the smallest

cardinality is called the minimum (connected) dominating
set.

• independent set: An independent set I of V is a subset

of V such that ∀u, v ∈ S, uv /∈ E.

• maximal independent set (MIS): If adding any node w ∈
V to I breaks the independent property, I is a maximal
independent set (MIS).

For any vertex u in a maximal independent set I , the length

of the shortest path from u to its closest vertex in I is either

two hops or three hops.

B. Network Model

In this paper, we model the ad hoc and sensor network

as a unit-disk graph G(V,E), a widely adopted model for

wireless ad hoc and sensor networks in which nodes can

communicate with each other if their distance is at most 1 unit.

Specifically, V represents the set of sensors and E represents

the set of edges. An edge uv ∈ E if and only if u, v ∈ V
and the Euclidean distance between u and v is no larger than

1 unit. This assumption is reasonable as in ad hoc and sensor

networks the topology is determined by the transmission range,

which is usually fixed.

We assume that in the network there already exists an

MIS and a corresponding backbone that are generated by any

approach available. For example, the algorithms proposed in

[12], [45], [46] can be applied here. Let u be any vertex in

MIS, Nu be the node set of one-hop neighbors of u, I denote

the node set of MIS, and C denote the set of nodes that are

on the backbone but not in the MIS I (i.e., C is the set of

nodes that connect the MIS nodes on the backbone). Let N
(I)
u

⊂ MIS denote the set of nodes in MIS that are two hops or

three hops away from u, and Iu denote the set of MIS nodes

within three hops of u. We assume N
(I)
u and Iu are available

to u.

2013 Proceedings IEEE INFOCOM

2185



When a node v fails or is added to the network, we assume

there is a message broadcasted to v’s neighbors in three-hop

distance.

IV. GEOMETRIC PROPERTIES OF UNIT-DISK GRAPHS

Based on the definition, an edge in a unit-disk graph exists

between two nodes if and only if their Euclidean distance is

at most 1. We have identified the following properties:

Lemma 4.1: Let uv and st be two crossing edges in a unit-

disk graph G(V,E), as shown in Fig 1. Then at least one of

u, v, s, t has direct edges to the other three vertices in G.

Proof: Due to the page limit, we omit the proof here. For

more details, please refer to [49].

s

u
t

v

o

Fig. 1. uv and st are two crossing
edges in a unit-disk graph G. Then
at least one of u, v, s, and t
can reach the other three vertices
directly in G.

Fig. 2. The array Hu, in which
elements are sorted in counter-
clockwise.

Lemma 4.2: Let u, v, s, t be four vertices in any MIS of a

unit-disk graph G such that there exists a path Puv with length

at most three hops to connect u and v and a path Pst with

length at most three hops to connect s and t. Let P be the set

of intersecting nodes in Puv and Pst. Then u, v, s, t can reach

each other by traversing only vertices in P .

Proof: Due to the page limit, we omit the proof here. For

more details, please refer to [49].

Note that the path length constraint of this Lemma can be

relaxed. Actually in a unit-disk graph G, every pair of nodes

in two crossing paths can reach each other by traversing only

vertices in these two paths.

Lemma 4.3: Let u, v be two vertices in any MIS of a unit-

disk graph G such that there exists a path Puv with length

at most three hops to connect u and v. Considering the

straight line segment uv, every point on uv is covered in the

transmission range of the nodes in Puv .

Proof: Due to the page limit, we omit the proof here. For

more details, please refer to [49].

Corollary 4.1: All the points within the convex polygon

uvst are covered by the transmission range of the nodes in

Puv .

Lemma 4.4: Let u, v, s, t be four vertices in any MIS of a

unit-disk graph G such that u and v are within at most three

hops, and s and t are within at most three hops. If the line

segment uv crosses the line segment st, given any arbitrary

path Pst with length at most three hops to connect u and v
and path Puv with length at most three hops to connect s and

t, they must be connected.

V. LOCALIZED BACKBONE RENOVATING ALGORITHM

In this section, a backbone expansion procedure is proposed

first. Then we introduce our localized backbone renovating

(LBR) algorithm. Specifically, during backbone renovating

there are two scenarios to consider: 1. node failure; 2. node

addition. In both scenarios we choose to update either I or C,

or both. The detailed design of LBR algorithm is elaborated

in the following sections.

A. Backbone Expansion with Convex-hull

Given a node u in MIS I , let Hu denote the convex

hull of the nodes in u ∪ N
(I)
u , where Hu is an array that

records the nodes on the boundary of the convex hull of u,

as shown in Fig.2. The convex hull can be easily calculated

by Graham’s Scan algorithm. Note that the number of nodes

on the boundary of convex hull Hu is limited by a constant

number 18 [32], the execution of Graham’s Scan algorithm

costs a constant time for the computation of convex hull Hu.

Let node u ∈ V compute the shortest path to connect u and

the nodes of N
(I)
u on the boundary of convex-hull Hu. All the

intermediate nodes that connect u and the nodes of N
(I)
u on

the convex-hull Hu form a set Cu, as shown in Fig.2. ∀u ∈ V
∩Cu form the set C. It is worth pointing out that C ∪ I is

proved to be a backbone in [32]. In the following the word

backbone refers to the expanded backbone.

B. Localized Backbone Renovation with Node Failure

Given an arbitrary node v fails in the network, there are

three cases: (a). v ∈ I , namely v belongs to the MIS; (b).

v ∈ C, namely v belongs to the backbone but v is not in the

MIS; (c). v belongs to neither I nor C, namely v does not

belong to the backbone. In the following we sketch the basic

idea of our algorithm to deal with the three cases.

1) Case 1: v ∈ I , namely v belongs to the MIS: In this

case, there are four steps to renovate the backbone:

• Step 1. The MIS is renovated by I ′ = I ∪ MDS(S),
where S denotes the set of v’s one-hop neighbors that

are not adjacent to any node in I , and MDS(S) denotes

the minimum dominating set of S.

Remark 5.1: Note that the local topology information

(e.g., N I
v ) is available to ∀u ∈ S, where |S| is no

greater than the node degree of v (usually a small constant

number), node u ∈ S could easily compute a uniquely

determined MDS(S). Then the nodes u ∈ N I
v update

their Iu. We have I ′ = I ∪MDS(S).

Remark 5.2: Note that though we use I ′ = I∪MDS(S),
this update is not necessarily taken all over the network.

Instead, it is only taken by nodes within three hops of v,

i.e., only the nodes within v’s three hops update their Iu
with I ′u = Iu ∪MDS(S) ∩N I

u .

• Step 2. The node u ∈ I where v ∈ Hu (i.e., v is on the

boundary of the convex hull of u) renovates its convex

hull based on N I′
u \ v. Specifically, node u launches

Graham Scan algorithm with N I′
u \v to update its convex
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Fig. 3. Case study for Lemma 4.2. Puv and Pst are two crossing paths in a unit-disk graph G. v1, v2, v3 and v4 are the four vertices of the two crossing
edges. Then u, v, s, t connect to each other by traversing only nodes in Puv and Pst.

u v

s

tx y

(a) Case 1: t is within the convex polygon
uvyx.

u v

s

t

x y

(b) Case 2: Pst crosses the line segment uv.

u v

s

t

x y

(c) Case 3: Pst does not cross the line seg-
ment uv.

Fig. 4. Case study for Lemma 4.4

hull and the shortest paths to the nodes on convex hull,

denoted as H ′
u and C ′

u.

Remark 5.3: It is worth pointing out that all the nodes

in Hu except v will remain in H ′
u. The detailed proof is

given in Lemma 6.1.

• Step 3. Every newly added node u ∈ MDS(S) computes

its convex hull Hu and the corresponding Cu to connect

to the nodes in Hu. According to Step 1 and Step 2, the

set C is renovated by C ′ = (
⋃

u∈I′\I Cu) ∪ C \ Cv .

• Step 4. I ′ ∪ C ′ contributes the renovated backbone. It is

worth pointing out that I ′ ∪ C ′ is a CDS. The detailed

proof will be given in Lemma 6.4.

2) Case 2: v ∈ C, namely v is on the backbone but v does

not belong to MIS: Let u,w ∈ I denote two nodes in the MIS

that are connected through node v on the backbone, where

u ∈ N I
w and w ∈ N I

u . If the alternate shortest path between u
and w is not greater than 3, u and w will be connected with

this alternate shortest path. The corresponding intermediate

nodes on the path between u and w will be updated in C ′.
If the alternate shortest path between u and w is greater

than 3, i.e., u /∈ N I
w and w /∈ N I

u , u and w begin to update

their convex hulls based on Section V-A. All the nodes in Hu

except w will remain in H ′
u, and vice versa. The detailed proof

is given in Lemma 6.1.

3) Case 3: v /∈ I ∪ C, namely v does not belong to the

backbone: Since the backbone is a connected dominating set,

for the nodes that do not belong to the backbone, they must

be dominated by the backbone. In other words, they are all

one-hop neighbors adjacent to the backbone nodes. Therefore,

it doesn’t need to take any action when node v fails in this

case.

According to Lemma 6.9, I ′∪C ′ is the renovated backbone

and connects all the nodes in the network.

C. Localized Backbone Renovation with Node Addition

Given an arbitrary node v added into the network, there

are two cases: (a). v ∈ Nu, where u ∈ I , namely v has a

neighbor u in MIS; (b). �u ∈ I such that v ∈ Nu, namely v
is not adjacent to any node in MIS. In the following we sketch

the basic idea of our algorithm to deal with the two cases.

1) Case 1: �u ∈ I such that v ∈ Nu, namely v is not

adjacent to any node in MIS:

• Step 1. The MIS I is renovated first by adding v to I .

Let I ′ denote the renovated MIS, we have I ′ = I ∪ v.

Specifically, v selects itself as a new MIS node by

broadcasting this notification to its neighbors within three

hops and then collecting the local topology information

from these nodes.

Remark 5.4: Note that though we have I ′ = I ∪ v, this

information is not necessary to be broadcast over the

whole network. Instead, every node only needs to know

the topology changes within its three hops. Therefore,

only the nodes u within v’s three hops update their local

MIS information I ′u.

• Step 2. The set C is renovated. Let C ′ denote the

renovated set C, we have C ′ = C ∪ Cv . Specifically, v
computes Hv with N I

v based on Graham Scan algorithm
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and connects to the nodes on the boundary of convex-

hull Hv via the shortest path. Then all the intermediate

nodes that connect v and the nodes on the boundary of

convex-hull Hv form the set Cv . I ′ ∪ C ′ contributes the

renovated backbone.

• Step 3. I ′ ∪ C ′ contributes the renovated backbone.

2) Case 2: v ∈ Nu, where u ∈ I , namely v has a neighbor u
in MIS: Since v has a neighbor u in MIS, it must be dominated

by u on the backbone. Therefore, it doesn’t need to take any

action when node v is added into the network in this case.

According to Lemma 6.9, I ′∪C ′ is the renovated backbone

and connects all the nodes in the network.

D. LBR Algorithm

This section provides the pseudo code of LBR algorithm.

VI. PERFORMANCE ANALYSIS

Lemma 6.1: Given an arbitrary node v on the boundary of

node u’s convex hull Hu that fails, all the other boundary

nodes in Hu will remain in the renovated H ′
u.

Proof: It’s obvious that the coverage area of convex-hull

Hu will shrink. According to the property of convex hull and

the execution procedure of Graham Scan algorithm, all the

nodes in Hu except v will remain in H ′
u.

Corollary 6.1: Given an arbitrary node v ∈ I fails, during

the convex hull renovation executed at the MIS node u ∈ I
that v ∈ Hu, all the nodes in Hu will remain in the renovated

H ′
u.

Lemma 6.2: Given an arbitrary node v in the network fails

or is added in the network, LBR terminates locally in a

constant time.

Proof: Due to the page limit, we omit the proof here. For

more details, please refer to [49].

Corollary 6.2: Given that an arbitrary node in the network

fails or is added, the communication overhead of LBR is O(k),

where k is the number of nodes broken or added.

Corollary 6.3: Given that an arbitrary node in the network

fails or is added, the computation overhead of LBR is O(k),

where k is the number of nodes broken or added.

Corollary 6.4: The computation complexity of LBR is

O(n), where n is the number of nodes broken or added.

Lemma 6.3: Given an arbitrary node v ∈ I fails while the

network is still connected, all the other nodes in I will remain

on the renovated backbone.

Proof: According to Section V-B, during backbone ren-

ovating procedure, the only node that is removed from the

backbone is v itself. All the other nodes in I remain in the

newly renovated MIS I ′. Since the backbone is I ′ ∪ C ′, all

the other nodes in I remain on the renovated backbone.

Lemma 6.4: Given an arbitrary node v ∈ I fails, while

the network is still connected, the renovated backbone is

connected.

Proof: Due to the page limit, we omit the proof here. For

more details, please refer to [49].

Algorithm 1 Localized Backbone Renovating Algorithm

Input: v, I , C, G(V,E)
Output: The renovated backbone I ′ ∪ C′.

1: function LBR(v, I , C, G(V,E))
2: Case 1: v fails
3: if v ∈ I then � v is an MIS node
4: Step 1: I ′ = I ∪MDS(S) � The nodes

within v’s three-hop distance update their Ius with
I ′u = Iu ∪ MDS(S) ∩ NI

u , where S denotes the
set of v’s one-hop neighbors that are not adjacent to
any node in I , and MDS(S) denotes the minimum
dominating set of S.

5: Step 2: Renovate H ′
u ← Hu and C′

u ← Cu, ∀u ∈ I
where v ∈ Hu � Each MIS node
u ∈ I where v ∈ Hu renovates its convex hull and
corresponding Cu based on NI′

u \ v.
6: Step 3: C′ = (

⋃
u∈I′\I Cu) ∪ C \ v �

Every newly added node u ∈MDS(S) recomputes
its convex hull Hu and the corresponding Cu. The
renovated C′ is updated by the newly generated Cu

according to Step 1 and Step 2.
7: end if
8: if v ∈ C then � v is on the backbone but is not an MIS

node.
9: Step 1. Compute the shortest path SP (u,w) between u

and w � u,w ∈ I denote two nodes in the MIS
that are connected through node v on the backbone,
where u ∈ NI

w and w ∈ NI
u

10: Step 2-1. If |SP (u,w)| ≤ 3, update C′ with SP (u,w)
� If the alternate shortest path between u and w is
no greater than 3, update the set C′ with this shortest
path SP (u,w).

11: Step 2-2. If |SP (u,w)| > 3, recompute H ′
u, H

′
w and

C′
u, C

′
w and update C with C′

u and C′
w � If the

alternate shortest path between u and w is greater
than 3, i.e., u /∈ NI

w and w /∈ NI
u , u and w begin to

update their convex hulls and then Cu and Cw.
12: end if
13: if v /∈ I ∪ C then
14: No action is needed.
15: end if
16:

17:

18: Case 2: v is a newly added node
19: if �u ∈ I such that v ∈ Nu then � v is not adjacent to any

node in MIS
20: Step 1: I ′ = I ∪ v � The MIS I is renovated by adding

v to I
21: Step 2: Compute Hv, Cv � The set C is renovated
22: else
23: No action is needed.
24: end if
25: Nodes in I ′ ∪C′ contribute the renovated backbone. Return.
26: end function
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Lemma 6.5: Given an arbitrary node v ∈ I is added into the

network, while the network is still connected, the renovated

backbone is connected.

Proof: According to Section V-C1, node v indirectly

connects to the backbone via its convex hull Hv . Therefore

the renovated backbone is still connected.

Corollary 6.5: Given an arbitrary node v ∈ I fails or is

added into the network, while the network is still connected,

the renovated backbone is connected.

Lemma 6.6: Given an arbitrary node v in C fails, while

the network is still connected, the renovated backbone is

connected.

Proof: Due to the page limit, we omit the proof here. For

more details, please refer to [49].

Lemma 6.7: Given an arbitrary node v ∈ Nu where u ∈ I
is added, while the network is still connected, the renovated

backbone is connected.

Proof: According to Section V-C2, node v directly con-

nects itself to the backbone (or more specifically node u).

Therefore the renovated backbone is still connected.

Lemma 6.8: Given an arbitrary node on the backbone that

fails, while the network is still connected, the renovated

backbone is connected.

Proof: According to Corollary 6.5, Lemma 6.6 and

Lemma 6.7, given an arbitrary node on the backbone fails,

the renovated backbone provided by LBR is connected.

Lemma 6.9: Given an arbitrary node in the network fails or

is added, while the network is still connected, the renovated

backbone is connected.

Proof: According to Lemma 6.8, given an arbitrary node

on the backbone fails or is added, the renovated backbone

provided by LBR is connected.

Corollary 6.6: The renovated backbone is always con-

nected if the network is connected.

Lemma 6.10: Let h denote the cardinality of the convex

hull Hu, the cardinality of the renovated backbone is at most

2h · |I|.
Proof: Due to the page limit, we omit the proof here. For

more details, please refer to [49].

Note that a maximal independent set of V is also a domi-

nating set of V . Multiple works (e.g., [21]) have proved the

following result that relates the size of any MIS of a unit-disk

graph G to that of its MCDS.

Lemma 6.11: Let I be any maximal independent set and

opt be any MCDS of a unit-disk graph G. Then |I| ≤ k ·
|opt|+ 1 for |opt| > 1, k ≤ 4.

Lemma 6.12: Let h denote the cardinality of the convex

hull Hu, which is usually a small constant. The size of the

connected dominating set renovated by LBR is less than 8h ·
opt+ h+ 1, where opt is the size of a MCDS.

Proof: This lemma follows from Lemma 6.11 and

Lemma 6.10.

VII. SIMULATION

In this section, We compare the performance of three

different backbone maintenance algorithms with LBR, OST, a

centralized algorithm that keeps a minimum spanning tree in

entire network; AST, another centralized algorithm that keeps

the minimum spanning trees computed with every MIS node

as a root in the network; BF, a localized best-effort algorithm

that tries to reconnect every broken part on the backbone with

shortest path within three hops. It is worth pointing out that

BF may fail to renovate the backbone sometimes and cannot

guarantee network connectivity after maintenance.

The metrics we used to evaluate the performance of LBR

and other algorithms are the size of maintained backbone and

the success rate that the renovated backbone is connected while

the network is connected.

A. Settings

In the simulation, nodes are randomly distributed in an

area of 500m × 500m and the results are averaged over 100
runs. The communication radius of each node is chosen from

[30m, 40m]. According to our simulation settings, the radius

of 30m indicates that the initial network is sparse (i.e., average

node degree is about 6) and the radius of 40m indicates that the

initial network is relatively dense (i.e., average node degree is

about 10). Let cn denote the number of changed nodes in the

network, where cn = [50, 100, 150, 200, 250, 300, 350, 400]
and 0 represents the initial topology, fr denotes the percentage

of the number of failed nodes in cn, ar denotes the percentage

of the number of added nodes in cn. Obviously, fr + ar =

100%.

The network topology changes over time in three ways.

In the first topology changing situation, the initial number of

nodes in the network is 300, fr = 10%, and ar = 90%. This

setting can show the performance of these algorithms when the

number of nodes in the network increases (i.e., the network

becomes denser). In the second topology situation, the initial

number of nodes is 500, fr = 50%, and ar = 50%. This

setting can show the performance when the size of the network

slightly changes. In the third situation, the initial number of

nodes is 500, fr = 90%, and ar = 10%. This setting can show

the performance when the number of nodes in the network

decreases (i.e., the network becomes sparser). The failed nodes

(newly added nodes) are randomly selected (deployed) in the

network.

B. Simulation Results

1) Simulation Study on Backbone Size: Fig.5, Fig.6, and

Fig.7 illustrate the relationship between the size of the

backbone and the number of changed nodes given [ar =
90%, fr = 10%], [ar = 50%, fr = 50%], and [ar =
10%, fr = 90%], respectively, under different communication

radii 30m and 40m.

Both Fig.5 and Fig.7 show that as the number of nodes in

the network increases (decreases), the size of the backbone

increases (decreases) linearly in all the algorithms OST, AST,

BF, and LBR. OST leads to the slowest backbone size increase
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(decrease) as it uses only one minimum spanning tree in

the network. BF leads to the second slowest backbone size

increase (decrease) as it repairs a spanning tree locally and

thus leads to limited size increase (decrease) in the network.

AST leads to the fastest backbone size increase (decrease)

as it uses all possible minimum spanning trees rooted at the

nodes in MIS. LBR leads to the medium increase (decrease)

of backbone size among the three algorithms, as it repairs the

backbone locally and terminates locally at a constant time,

as shown in Lemma 6.2. LBR does not necessarily provide

a minimum spanning tree or contribute the combination of

all possible minimum spanning trees. Thus LBR leads to the

medium increase (decrease) in both Fig.5 and Fig.7.
Fig.6 illustrates the relationship between the size of the

backbone and the number of changed nodes given ar = 50%
and fr = 50% under the communication radii 30m and

40m, respectively. Both Fig.6(a) and Fig.6(b) show that as

the number of nodes in the network remains stable, the size

of the backbone remains stable in all algorithms OST, AST,

BF, and LBR.
According to Fig.5, Fig.6, and Fig.7, OST and BF lead

to the smallest backbone all the time as they use only one

minimum spanning tree in the network. AST leads to the

largest backbone as it uses all possible minimum spanning

trees rooted at the nodes in MIS. LBR leads to a medium-

size backbone among the three algorithms, as it repairs the

backbone locally and terminates locally at a constant time, as

shown in Lemma 6.2.
From Fig.5, Fig.6, and Fig.7, we can also find that the

larger the communication radius, the denser the network, the

smaller the renovated backbone, and vice versa. It is also

interesting to observe that when the network becomes denser,

the backbone size of LBR generally follows the trend of that

of OST; when the network becomes sparser, the backbone size

of LBR generally follows the trend of AST.
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(b) Communication radius = 40m

Fig. 5. The size of backbone vs. the number of changed nodes under
the topology changing setting ar = 90% and fr = 10% under different
communication radii [30m, 40m].

2) Simulation Study on Success Rate: It is worth pointing

out that the success rates of AST, OST are always 1 when

the network is connected. This result is reasonable since

both AST and OST are centralized algorithms and thus can

always guarantee connectivity when the network is connected.

Therefore, we simple compare the success rate of LBR and

BF.
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Fig. 6. The size of backbone vs. the number of changed nodes under
the topology changing setting ar = 50% and fr = 50% under different
communication radii [30m, 40m].
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Fig. 7. The size of backbone vs. the number of changed nodes under
the topology changing setting ar = 10% and fr = 90% under different
communication radii [30m, 40m].

Fig.8, Fig.9, and Fig.10 illustrate the relationship between

the success rate and the number of changed nodes given

[ar = 90%, fr = 10%], [ar = 50%, fr = 50%], and [ar =
10%, fr = 90%], respectively, under different communication

radii 30m and 40m.

Both Fig.8 and Fig.10 show that as the number of nodes

in the network increases (decreases), the success rate that the

backbone renovated by BF is connected increases (decreases)

in BF. In Fig.9, it is also interesting to observe that when the

number of nodes in the network remains stable, the success

rate that the backbone renovated by BF is connected is not

stable and slowly decreases as the number of changed nodes

increases. This indicates that BF is not robust for backbone

maintenance.

From Fig.8, Fig.9, and Fig.10, we can easily find that the

backbone renovated by LBR is always connected if the net-

work is connected. This is also proved in Lemma 6.9. In these

figures, we can also find that the larger the communication

radius, the denser the network, the higher the success rate that

the backbone renovated by BF is connected, and vice versa.

3) Communication and Computation Overhead: This sec-

tion studies the relationship between the size of the network

and the communication/computation overhead of the four

algorithms. Specifically, we set the initial number of nodes

in the network to [500, 1000]. The number of changed nodes

is set to 500, given the topology changing setting ar = 50%
and fr = 50% with a communication radius 40m.

Fig.11(a) shows that as the size of the network increases,
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(b) Communication radius = 40m

Fig. 8. The success rate of maintaining the network connectivity via the
renovated backbone vs. the number of changed nodes under the topology
changing setting ar = 90% and fr = 10% under different communication
radii [30m, 40m].
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(b) Communication radius = 40m

Fig. 9. The success rate of maintaining the network connectivity via the
renovated backbone vs. the number of changed nodes under the topology
changing setting ar = 50% and fr = 50% under different communication
radii [30m, 40m].
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Fig. 10. The success rate of maintaining the network connectivity via the
renovated backbone vs. the number of changed nodes under the topology
changing setting ar = 10% and fr = 90% under different communication
radii [30m, 40m].

the communication overhead of the four algorithms increases.

As shown in the graph, since AST and OST are centralized

algorithm, they need to collect the global topology infor-

mation, and thus have the highest communication overhead.

OST has smaller communication compared with AST, since

OST computes much less number of minimum spanning trees

than AST. LBR and BF are localized algorithms and thus

have much less communication overhead compared with AST

and OST. However, LBR has slightly larger communication

overhead than that of BF, because it needs to repair the

topology within three hops instead of repairing only one path.

Fig.11(b) shows that as the size of the network increases,

the computation overhead of centralized algorithms increases

to some extents, because the backbone size of OST and

AST, which determines their computation overhead, becomes

stable when the size of the network (or more specifically,

the network density) increases to some extent. We can also

find that the computation overhead of LBR and BF slowly

increases, because as the size of the network increases the

number of nodes needed to repair increases.
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Fig. 11. The communication/computation overhead vs. the number of nodes
in the network under the topology changing setting ar = 50% and fr = 50%
with communication radius 40m.

VIII. CONCLUSION

In this paper we propose a localized backbone renovating

algorithm (LBR) for backbone maintenance in wireless ad

hoc and sensor networks. Our theoretical analysis shows that

the LBR algorithm could renovate the backbone in a purely

localized manner with guaranteed connectivity while keeping

the backbone size within a constant factor from that of the

minimum CDS. Unless the network is no longer connected,

LBR can always keep the renovated backbone connected.

Both theoretical analysis and simulation study also show that

LBR has ultra low communication and computation overhead.

Besides, LBR can deal with arbitrary number of node failures

and additions, which provides good scalability to network

management.
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